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EXCUTIVE SUMMARY 
 

Multimodal transportation systems, including automobile, different forms of public 

transportation, walking, cycling, and ridesharing, have a significant impact on people’s travel 

behaviors. Under disaster conditions, multimodal transportation could help move people away 

from high-risk areas to safer areas. Multimodal transportation systems could provide more 

opportunities for the protection of life, especially for certain populations such as carless 

individuals. In order to enhance disaster resilience, it is critical to have effective multimodal 

transportation systems. 

 

Therefore, the objective of this study is to gain a better understanding on the diversity level of 

multimodal transportation systems and investigate the impact of the level of diversity on travel 

and evacuation behaviors during disasters. To this end, metrics and methods to quantify the 

diversity of transportation systems were proposed and tested in a case study of the city of 

Hartford. Smartphone location data (SLD) were collected to quantify the mobility change in the 

city of Hartford during two natural disasters. The potential relationship between disaster mobility 

and transportation infrastructure diversity was explored. Stakeholders from various agencies 

(e.g., DOT, emergent management office) can benefit from this study by better assessing and 

improving the diversity level of transportation systems, and making informed decisions in coping 

with disasters considering the transportation system characteristics.            

  



1 

Chapter 1.  Introduction 

1.1 Problem Statement 

Disasters, whether natural (e.g., earthquakes, hurricanes, floods, wild fires) or man-made 

(e.g., terrorist attacks, chemical spills, nuclear power plant explosions), are occurring at an 

alarming rate in recent years, causing sudden disruptions to human life. The Federal Emergency 

Management Agency (FEMA) disaster database shows that in the past decade (i.e., 2008-2018), 

a total of 1,343 disaster declarations were issued requiring evacuation in the United States 

(FEMA 2019). Transportation system, as one of the critical infrastructure systems, also 

recognized as “lifelines”, plays a crucial role for a region in disaster response and recovery. 

There is an urgent need to develop resilient transportation infrastructure systems that can better 

serve communities both under business-as-usual and emergency conditions.   

In recent studies, multimodal emergency transportation has drawn more and more 

attention. Multimodal transportation systems have various travel modes and services, including 

automobile, different forms of public transportation (bus, train, ferry, etc.), walking, cycling, 

ridesharing, and mobility substitutes such as telework and delivery services (Litman 2018). In 

real world, people are very likely to choose different ways to move to safe areas based on their 

own conditions in the face of disasters. For example, in a typical community, 20-40% of the total 

population, and 10-20% of adolescents and adults, cannot drive due to disability, economic, age 

constraints, or vehicle failures (Litman 2017). These carless people will need to rely on other 

approaches other than driving for evacuation. Also, in some conditions (e.g., chemical spill, 

earthquake, terrorist attacks), evacuation on foot is a vital mode and could be the only possible 

mode of escape. Therefore, it is critical to have a diverse multimodal transportation system in 

order to enhance the disaster resilience of people. 

1.2 Objectives 

The hypothesis of this study is that the diversity of multimodal transportation systems 

would affect travelers’ behaviors and potentially evacuation choices during disasters. 

Specifically, three research objectives are proposed:    

Objective 1: Quantify the level of diversity of infrastructures in a multimodal transportation 

system. Specifically, six types of transportation modes are considered in this study: auto, bus, 

rail, bike, walking, and ridesharing; 

Objective 2: Quantify the level of diversity in travel behaviors. Compare the infrastructure 

diversity and travel behavior diversity of the same transportation system, and explore the reasons 

for divergence if any;  

Objective 3: Investigate the potential influences of transportation infrastructure diversity on 

travelers’ behaviors during disasters. 

1.3 Expected Contributions 

The potential benefits of the projects are twofold. First, it creates metrics and methods to 

assess the level of diversity of multimodal transportation systems from both the infrastructure 

perspective and the travel behavior perspective. The methods and metrics can help quantify the 
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level of diversity of different transportation systems and identify improvement needs. Second, it 

investigates the relationships between travel behaviors during disasters and transportation 

infrastructure diversity. The relationship can help decision makers to make informed decisions in 

transportation planning as well as disaster preparation and response.  

1.4 Report Overview 

Chapter 2 presents the proposed method for assessing multimodal transportation system 

diversity based on the physical infrastructure characteristics and a case study. Chapter 3 presents 

the proposed method for assessing multimodal transportation system diversity based on travel 

behavior surveys and a case study. Chapter 4 summarizes and compares the results from the case 

studies. Chapter 5 presents the proposed method for quantifying human mobility change during 

disasters and explores its relationships with transportation infrastructure diversity.  
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Chapter 2.  Transportation Infrastructure Diversity Assessment  

2.1 Literature Review 

Physical infrastructure diversity is used to measure the quantity and distribution of 

different transportation modes available in a region. The diversity of a multimodal transportation 

system has been studied from the physical infrastructure perspective using different methods 

(Rahimi-Golkhandan et al. 2019; Su et al. 2014). In this study, the approach proposed by 

Rahimi-Golkhandan et al. (2019) in assessing the diversity of transportation infrastructure 

systems using the ecological concepts of functional richness and evenness was followed.  

An ecological system contains many different species that interact with each other as well 

as with their surrounding environment (Machado-León and Goodchild 2017). The ecological 

system diversity is defined as the abundance and distribution of different species in the 

functional space of a given area. Functional richness and functional evenness are two measures 

that can be used together to quantify the ecological system diversity (Mason et al. 2005; Mouillot 

et al. 2013). An analogy can be made between ecologic systems and multimodal transportation 

systems based on their similarity in certain attributes (Amoaning-Yankson and Amekudzi-

Kennedy 2017). Therefore, the concept of ecological systems diversity, functional richness, and 

functional evenness can be translated into the context of multimodal transportation systems. 

2.2 Methodology 

2.2.1 Functional Richness 

Functional richness in an ecological system is defined as the volume occupied by all species 

within its functional space of a given area (Mouillot et al. 2013). In multimodal 

transportation systems, functional richness can be translated as the abundance of all 

transportation modes in a given area. Therefore, the abundance of each transportation mode 

needs to be quantified first. Then, the abundance of different transportation modes needs to 

be aggregated to represent the overall functional richness of the transportation system in the 

area.  

The abundance of a certain transportation mode can be defined as the amount of service it 

provides per unit area. The functional richness of roadways, bus routes, railways, sidewalks, 

and bike routes can be calculated as the length of routes per unit area in a region, as shown in 

equation (1): 

 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 =
𝐿

𝐴
 (1) 

𝐿: the total length of a transportation mode mentioned above; 

𝐴: the size of an area. 

For the ridesharing mode, the functional richness can be calculated as the number of 

ridesharing providers (i.e., individual drivers who provide ridesharing services) available per 

unit area, as shown in equation (2): 
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 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 =
𝑛𝑅𝑆

𝐴
 (2) 

𝑛𝑅𝑆: the number of ridesharing providers available; 

𝐴: the size of an area. 

2.2.2 Functional Evenness 

Functional evenness is related to the regularity of the distribution of all species within the 

functional space of an ecological system (Mouillot et al. 2013). This concept can be used to 

measure the distribution of transportation modes in a region (Rahimi-Golkhandan et al. 

2019). If all travelers have the same accessibility to one transportation mode across a region, 

the functional evenness of that transportation mode is high. While if only a few people have 

easy access to a transportation mode, the functional evenness of that transportation mode is 

low. 

In order to quantify the functional evenness of each transportation mode, a concept of 

functional regularity index (FRO) is introduced (Bulla, 1994). The basic idea of FRO is to 

compare the actual distribution of species’ traits with the perfect even distribution of the 

traits (Mouillot et al. 2005; Villéger et al. 2008). Following the idea of FRO, the functional 

evenness of a multimodal transportation system can be assessed. First, census blocks of an 

area, as the smallest geographic units used by the United States Census Bureau are identified. 

Then, the accessibility from a census block centroid (i.e., a point located in the geographic 

center of the polygon) to a transportation mode is captured. For roadways, bike routes, and 

sidewalks, the accessibility is measured as the shortest distance of a census block centroid to 

the nearest roadway, bike route or sidewalk. For the bus and rail transit modes, the 

accessibility is measured as the distance of a census block centroid to the nearest bus stop or 

railway station. For the ridesharing mode, the accessibility is defined as the number of 

ridesharing providers available within a selected distance of a census block centroid. The 

closer the accessibility values across different census blocks, the higher the functional 

evenness value. If the accessibility values to one transportation mode for all the census block 

centroids in a region are identical, the functional evenness of that transportation mode has its 

maximum value of 1. 

The functional evenness of a transportation mode can be quantified using equation (3): 

 𝐸𝑣𝑒𝑛𝑛𝑒𝑠𝑠 =

∑ min (
𝑑𝑖

∑ 𝑑𝑖
𝑛
𝑖=1

,
1
𝑛

)𝑛
𝑖=1 −

1
𝑛

1 −
1
𝑛

 (3) 

𝑛: the number of census block centroids in a region; 

𝑑𝑖: the accessibility of the 𝑖𝑡ℎ centroid to a certain transportation mode. 
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2.2.3 Physical Infrastructure Diversity  

After the quantification of functional richness and evenness of each transportation mode in a 

region, entropy weight method (EWM) is adopted to aggregate these individual metrics into 

one diversity metric. This diversity metric can represent the level of diversity of a 

multimodal transportation system from the physical infrastructure perspective.  

EWM is an objective weighting method that can be used to integrate different indicators into 

one single index by assigning weights to the indicators (He et al. 2016). The weights are 

determined based on the degree of differentiation among values of indicators. In this study, 

since six transportation modes are considered and each mode has a functional richness value 

and a functional evenness value, 12 indicators in total needs to be integrated for each area. 

For each indicator, its values across different areas will be evaluated. If the values show a 

large variance, a higher weight will be given to the indicator (Zhu et al. 2020). This is 

because a higher level of variation in the values implies that more information is included in 

an indicator. The equation and steps for calculating physical infrastructure diversity based on 

EWM are provided below.    

The physical infrastructure diversity of a multimodal transportation system is shown in 

equation (4).  

 𝐷𝑃𝐼 = ∑(𝑊𝑅𝑖
𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖 + 𝑊𝐸𝑖

𝐸𝑣𝑒𝑛𝑛𝑒𝑠𝑠𝑖)

𝑛

𝑖=1

 (4) 

𝐷𝑃𝐼: the value of physical infrastructure diversity; 

𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖: the richness value for the 𝑖𝑡ℎ transportation mode; 

𝑊𝑅𝑖
: the weight for the corresponding richness indicator; 

𝐸𝑣𝑒𝑛𝑛𝑒𝑠𝑠𝑖: the evenness value for the 𝑖𝑡ℎ transportation mode; 

𝑊𝐸𝑖
: the weight for the corresponding evenness indicator; 

𝑛: the total number of transportation modes considered. 

The sum of the weights of all the indicators in equation (4) must equal one. The weights of 

the indicators in equation (4) can be determined using the following steps: 

Step 1: The values of each indicator are mapped into (0, 1] through data normalization. Data 

normalization is performed by dividing the original value of an indicator by the maximum 

value of this indicator among all regions studied, as shown in equation (5). Data 

normalization eliminates the units of measurement, and enables the comparison and 

integration of different indicators.  

 𝑥𝑖𝑗 =
𝑎𝑖𝑗

max(𝑎𝑗)
 (𝑖 = 1,2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ ,2𝑛) (5) 
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𝑚: the number of regions studied; 

𝑛: the number of transportation modes considered for each region; 

𝑎𝑖𝑗: the original value of the  𝑗𝑡ℎ indicator in the 𝑖𝑡ℎ region; 

𝑎𝑗: all the original values of the 𝑗𝑡ℎ indicator among all regions. 

𝑥𝑖𝑗: the value of the 𝑗𝑡ℎ indicator in the  𝑖𝑡ℎ region after data normalization. 

Step 2: Calculate the entropy value of each indicator. To determine the entropy value, the 

ratio of the 𝑗𝑡ℎ indicator of the 𝑖𝑡ℎ region to the sum of all the 𝑗𝑡ℎ indicators of all regions is 

first calculated as shown in equation (6). Then the entropy value of the 𝑗𝑡ℎ indicator can be 

calculated using equation (7). If the values of an indicator across all the regions studied are 

close to each other, the entropy value of this indicator would be large, since entropy 

essentially measures uncertainty. 

 𝑝𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 (6) 

 𝐸𝑗 = −
∑ 𝑝𝑖𝑗 ln 𝑝𝑖𝑗

𝑚
𝑖=1

ln 𝑚
 (7) 

𝑝𝑖𝑗: the ratio of the value of the 𝑗𝑡ℎ indicator for the 𝑖𝑡ℎ region to the sum of all values of the 

𝑗𝑡ℎ indicator among all regions; 

𝐸𝑗: the entropy value of the 𝑗𝑡ℎ indicator; 

𝑚: the total number of regions. 

Step 3: Generate the entropy weight of each indicator, as shown in equation (8). Entropy 

weight measures the amount of information contained in an indicator. A larger entropy value 

implies a high level of similarity in all values of an indicator across different regions. As a 

result, less information is contained in the indicator, and the entropy weight of this indicator 

is low. 

 𝑊𝑗 =
1 − 𝐸𝑗

2𝑛 − ∑ 𝐸𝑗
2𝑛
𝑗=1

 (8) 

𝑊𝑗: the weight of the 𝑗𝑡ℎ indicator; 

𝑛: the number of transportation modes in a region. 

2.3 Case Study 

A case study of the capital city of Connecticut, Hartford was conducted to assess its 

transportation infrastructure diversity. The size of the city of Hartford is 17.3 square miles 
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(Connecticut Department of Economic Community Development, 2016). It has a population of 

124,390, with 53,696 housing units (U.S. Census Bureau 2018). Six zip code areas of the city of 

Hartford (i.e., 06103, 06105, 06106, 06112, 06114, and 06120) were chosen as the study regions. 

Using the method introduced above, the diversity of the multimodal transportation systems in the 

six zip code areas, including roadways, bus routes, railways, sidewalks, bike routes, and 

ridesharing were quantified.    

In order to quantify the physical infrastructure diversity in the six zip code areas, 

infrastructure data were collected from Hartford GIS Data (City of Hartford 2019), which 

included ArcGIS data of various transportation infrastructures such as roadways, bus routes and 

stops, railways, bike routes, and sidewalks. The functional richness and evenness of these 

transportation modes were calculated using the ArcGIS data. For the ridesharing mode, data 

were obtained from the CT rides website, which is a GIS-based website that helps commuters 

find ridesharing providers (CTrides 2019). Through the website, a commuter can input his/her 

address and find out the number of ridesharing providers within a certain distance range. In this 

study, a search on the number of ridesharing providers in the six zip code areas was conducted in 

October 2019. The number of ridesharing providers available was used to calculate the 

functional richness of ridesharing in each zip code area. The functional evenness of ridesharing 

in each zip code area was calculated based on the number of ridesharing providers available 

within a certain distance (0.5 mile) of each census block centroid. For a specific zip code area, if 

the number of ridesharing providers in different census blocks is close, the functional evenness is 

considered to be high.  

The GIS maps of different transportation infrastructures in the case study are shown in 

Figure 2.1 - Figure 2.5. Data for the functional richness calculation of each transportation mode 

in the six zip code areas are summarized in Table 2.1. 

Table 2.1: Data for the functional richness calculation of each transportation mode in the six zip code areas 

Zip code 

Roadway 

length 

(miles) 

Bus route 

length 

(miles) 

Railway 

length 

(miles) 

Bike 

route 

length 

(miles) 

Sidewalk 

length 

(miles) 

# of 

ridesharing 

providers 

available 

Area 

(square 

miles) 

06103 20.90 79.35 1.25 2.18 41.13 93 0.54 

06105 41.25 44.79 3.22 8.49 91.70 239 2.27 

06106 86.19 83.69 4.21 17.87 200.84 238 4.30 

06112 53.13 20.48 3.06 10.54 116.07 81 3.04 

06114 62.97 44.87 5.82 6.84 99.58 75 4.05 

06120 44.06 48.10 17.05 9.60 81.33 59 3.97 
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Figure 2.1: The overview of roadways in six zip code areas in the city of Hartford 
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Figure 2.2: The overview of bus routes and stops in six zip code areas in the city of Hartford 
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Figure 2.3: The overview of railways in six zip code areas in the city of Hartford 
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Figure 2.4: The overview of bike routes in six zip code areas in the city of Hartford 
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Figure 2.5: The overview of sidewalks in six zip code areas in the city of Hartford 



13 

Using the data above, the functional richness of each transportation mode in six zip code 

areas can be calculated. For example, the total length of bus routes in zip code area 06103 is 

79.35 miles, and the area size of this zip code area is 0.54 square miles. As a result, the 

functional richness of bus routes in 06103 is: 

𝑅𝐵𝑆 =
𝐿

𝐴
=

79.35

0.54
= 146.950 

The results of richness calculation (original results and normalized results) are 

summarized in Table 2.2. Python codes of the functional richness calculation is attached in 

Appendix A. 
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Table 2.2: The functional richness of each transportation mode in six zip code areas (before data normalization) 

Zip 

code 
𝑅𝑅𝑁 𝑅𝐵𝑆 𝑅𝑅𝑇 𝑅𝐵𝑅 𝑅𝑊𝑊 𝑅𝑅𝑆 

 ORIG NORMD ORIG NORMD ORIG NORMD ORIG NORMD ORIG NORMD ORIG NORMD 

06103 38.711 1.000 146.950 1.000 2.306 0.537 4.033 0.970 76.171 1.000 172.222 1.000 

06105 18.171 0.469 19.731 0.134 1.417 0.330 3.738 0.900 40.394 0.530 105.286 0.611 

06106 20.043 0.518 19.463 0.132 0.980 0.228 4.155 1.000 46.707 0.613 55.349 0.321 

06112 17.477 0.451 6.738 0.046 1.008 0.235 3.467 0.834 38.182 0.501 26.645 0.155 

06114 15.548 0.402 11.078 0.075 1.437 0.334 1.689 0.406 24.588 0.323 18.519 0.108 

06120 11.098 0.287 12.115 0.082 4.295 1.000 2.419 0.582 20.485 0.269 14.861 0.086 

(Note: RN for roadways, BS for bus routes, RT for railways, BR for bike routes, WW for sidewalks, RS for ridesharing, ORIG for original, NORMD for 

normalized) 
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When calculating the functional evenness of each transportation mode in each zip code 

area, the shortest distance from each census block centroid to the nearest transportation 

infrastructure was generated through the proximity function in ArcGIS. The detailed information 

is shown in Figure 2.6 - Figure 2.10. Accessibility values from each census block centroid to 

each transportation mode in six zip code areas are summarized in Table 2.3 - Table 2.8. 

 

Figure 2.6: The overview of the shortest distance from each census block centroid to the nearest roadway in 

six zip code areas in the city of Hartford 
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Figure 2.7: The overview of the shortest distance from each census block centroid to the nearest bus stop in 

six zip code areas in the city of Hartford 
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Figure 2.8: The overview of the shortest distance from each census block centroid to the nearest railway 

station in six zip code areas in the city of Hartford 
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Figure 2.9: The overview of the shortest distance from each census block centroid to the nearest bike route in 

six zip code areas in the city of Hartford 
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Figure 2.10: The overview of the shortest distance from each census block centroid to the nearest sidewalk in 

six zip code areas in the city of Hartford 
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Table 2.3: Accessibility from each census block centroid to each transportation mode in the 06103 zip code 

area 

Centroid 

number 

Roadways 

(feet) 

Bus stops 

(feet) 

Railway 

stations 

(feet) 

Bike routes 

(feet) 

Sidewalks 

(feet) 
Ridesharing 

1 114.87 212.33 2960.87 168.94 43.05 43 

2 48.95 218.49 1396.52 658.30 37.92 57 

 

Table 2.4: Accessibility from each census block centroid to each transportation mode in the 06105 zip code 

area 

Centroid 

number 

Roadways 

(feet) 

Bus stops 

(feet) 

Railway 

stations 

(feet) 

Bike routes 

(feet) 

Sidewalks 

(feet) 
Ridesharing 

1 44.67 437.69 7725.99 54.53 11.95 18 

2 59.63 556.53 4430.03 712.97 30.15 32 

3 226.40 1025.70 6272.40 1040.67 246.20 30 

4 23.97 418.53 4489.12 1776.96 0.00 33 

5 163.17 312.30 3902.45 656.73 65.33 32 

6 128.46 588.87 3067.40 2009.84 75.05 32 

7 49.34 230.63 8844.68 509.91 20.23 15 

8 35.05 567.03 8808.75 588.89 8.81 22 

9 75.82 246.40 1421.94 1127.70 44.30 20 

10 311.91 562.34 2288.63 783.26 64.57 43 

11 95.95 878.56 5634.35 930.70 3.53 25 

12 16.40 940.38 4934.14 924.17 3.16 27 

13 49.72 313.28 4038.34 844.79 1.19 25 

14 21.37 166.75 4671.84 2299.75 0.00 23 

15 163.11 230.69 3113.24 1733.91 85.96 26 

16 584.90 1449.15 8156.34 551.82 325.05 4 

17 356.94 376.09 7199.02 1201.82 9.39 21 

18 135.59 269.89 7589.74 216.57 95.81 27 

19 51.23 456.86 8907.70 41.12 6.47 20 

20 23.37 686.12 9505.17 660.71 5.19 18 
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Table 2.5: Accessibility from each census block centroid to each transportation mode in the 06106 zip code 

area 

Centroid 

number 

Roadways 

(feet) 

Bus stops 

(feet) 

Railway 

stations 

(feet) 

Bike routes 

(feet) 

Sidewalks 

(feet) 
Ridesharing 

1 152.36 558.17 15141.67 1733.04 98.20 5 

2 583.83 675.02 7924.71 1171.04 15.98 32 

3 96.29 100.87 6388.06 1912.20 5.06 8 

4 31.91 86.50 16208.31 2682.68 64.42 2 

5 191.05 1112.15 6590.20 152.16 121.56 10 

6 110.58 1051.74 9889.70 1092.25 57.26 3 

7 503.71 1013.27 13610.67 949.72 249.77 2 

8 62.88 133.69 10835.28 1042.45 10.60 7 

9 136.57 544.32 12439.12 321.07 82.26 5 

10 56.17 683.22 17437.77 3973.90 17.00 3 

11 12.72 1089.73 15490.79 3155.15 11.67 2 

12 19.48 1346.37 9076.56 386.09 362.10 32 

13 69.69 358.20 4905.45 1824.13 27.55 12 

14 294.13 905.94 5454.68 534.95 164.72 17 

15 70.53 142.80 5696.47 60.37 15.34 11 

16 306.17 478.03 4033.22 1013.87 87.41 29 

17 12.45 224.26 5919.52 94.06 14.81 15 

18 156.91 223.45 3895.70 1343.95 0.43 32 

19 203.11 187.95 5294.04 1040.96 37.61 27 

20 225.22 327.97 4244.80 327.45 15.93 49 

21 91.23 554.94 4504.96 431.89 50.92 28 

22 128.55 547.39 3059.90 1043.41 94.43 26 

23 0.30 617.15 3515.68 1047.41 11.84 24 

24 74.54 498.04 7036.81 506.15 37.15 9 

25 17.44 703.79 9673.73 647.96 1.07 7 

26 104.82 260.44 10396.23 100.44 84.12 32 

27 54.39 845.89 9221.91 272.02 4.37 8 
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Table 2.6: Accessibility from each census block centroid to each transportation mode in the 06112 zip code 

area 

Centroid 

number 

Roadways 

(feet) 

Bus stops 

(feet) 

Railway 

stations 

(feet) 

Bike routes 

(feet) 

Sidewalks 

(feet) 
Ridesharing 

1 563.17 454.78 12976.40 1270.84 381.48 1 

2 59.30 505.49 6015.22 1059.05 0.17 12 

3 90.34 118.29 5018.12 75.89 1.57 24 

4 266.79 329.28 11204.08 893.47 10.43 8 

5 50.64 453.80 11338.14 468.96 5.19 3 

6 84.01 587.68 4394.74 748.65 21.35 22 

7 144.73 562.39 6573.01 2088.43 52.05 8 

8 136.86 194.85 7710.93 1060.48 40.78 5 

9 103.92 515.50 12017.65 1652.44 29.53 9 

10 73.90 462.80 14244.08 802.89 13.71 7 

11 90.71 575.19 9554.74 436.88 381.96 10 

12 58.70 793.13 7868.07 19.61 279.17 12 

13 29.72 806.01 13814.52 1756.12 5.46 13 

14 118.55 546.87 13311.38 1176.16 45.90 13 

15 31.34 54.83 8962.31 923.98 0.00 3 

16 112.92 375.65 9852.74 1420.12 77.15 3 
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Table 2.7: Accessibility from each census block centroid to each transportation mode in the 06114 zip code 

area 

Centroid 

number 

Roadways 

(feet) 

Bus stops 

(feet) 

Railway 

stations 

(feet) 

Bike routes 

(feet) 

Sidewalks 

(feet) 
Ridesharing 

1 87.36 532.56 8603.82 1893.42 7.80 13 

2 313.93 518.28 10688.68 511.87 181.05 1 

3 27.21 460.18 8350.81 478.06 4.87 13 

4 87.05 264.90 12094.73 1209.51 18.70 11 

5 21.33 151.74 13688.45 1972.11 6.11 10 

6 130.68 341.88 8740.98 2340.17 49.91 10 

7 160.64 122.48 6885.10 1296.47 116.53 20 

8 349.46 1087.15 14081.65 4809.83 798.35 1 

9 31.86 298.09 11293.31 3304.05 0.88 9 

10 27.40 585.41 13231.46 3301.11 9.61 9 

11 22.88 840.24 12399.76 3437.97 7.84 4 

12 149.09 961.74 14052.58 4311.43 24.96 3 

13 65.36 653.71 10798.12 3023.82 17.99 9 

14 59.32 550.18 11825.56 1924.92 17.21 6 

15 17.85 318.84 9768.82 2001.01 1.11 8 

16 166.83 233.15 13016.17 154.20 226.66 0 

17 15.70 626.14 10184.44 1129.89 19.09 11 

18 121.33 285.65 11171.97 1980.05 9.13 11 
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Table 2.8: Accessibility from each census block centroid to each transportation mode in the 06120 zip code 

area 

Centroid 

number 

Roadways 

(feet) 

Bus stops 

(feet) 

Railway 

stations 

(feet) 

Bike routes 

(feet) 

Sidewalks 

(feet) 
Ridesharing 

1 68.04 91.08 6191.91 92.61 4.55 14 

2 45.66 493.25 6515.49 671.74 5.67 9 

3 399.46 388.35 3374.12 553.84 13.81 2 

4 47.80 862.58 9749.14 2864.07 243.62 0 

5 72.31 549.81 5600.49 432.00 18.60 3 

6 89.73 508.06 9003.90 810.23 10.35 6 

7 75.79 1196.86 12150.52 1154.37 248.30 2 

8 142.03 477.20 9695.82 620.90 23.18 8 

9 14.54 756.23 7479.90 770.21 2.68 10 

10 196.94 579.73 2421.66 2223.97 46.99 22 

11 15.94 355.85 4448.85 1422.62 2.14 14 

12 187.14 488.19 3548.03 1748.61 0.13 11 

13 85.76 494.31 3725.89 1464.41 37.73 8 

 

Using the data above, the functional evenness of each transportation mode in the six zip 

code areas were calculated. For example, there are in total 20 census blocks in zip code area 

06105. The distance values from each census block centroid to the nearest bus stop were 

identified and summarized in Table 2.4. The functional evenness of bus routes in 06105 was 

calculated using equation (3): 

𝐸𝐵𝑆 =

∑ min (
𝑑𝑖

∑ 𝑑𝑖
20
𝑖=1

,
1

20)20
𝑖=1 −

1
20

1 −
1

20

= 0.761 

The results of evenness calculation (original results and normalized results) are 

summarized in Table 2.9. Python codes of the functional evenness calculation is attached in 

Appendix A. 
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Table 2.9: Evenness values of each transportation mode in six zip code areas (before data normalization) 

 

Zip 

code 
𝐸𝑅𝑁 𝐸𝐵𝑆 𝐸𝑅𝑇 𝐸𝐵𝑅 𝐸𝑊𝑊 𝐸𝑅𝑆 

 ORIG NORMD ORIG NORMD ORIG NORMD ORIG NORMD ORIG NORMD ORIG NORMD 

06103 0.598 0.881 0.986 1.000 0.641 0.697 0.408 0.537 0.937 1.000 0.860 0.988 

06105 0.587 0.866 0.761 0.772 0.805 0.876 0.737 0.969 0.454 0.484 0.870 1.000 

06106 0.625 0.921 0.740 0.751 0.781 0.849 0.667 0.876 0.545 0.582 0.644 0.740 

06112 0.678 1.000 0.821 0.833 0.853 0.928 0.761 1.000 0.374 0.399 0.728 0.836 

06114 0.617 0.910 0.768 0.779 0.920 1.000 0.747 0.982 0.313 0.334 0.752 0.864 

06120 0.638 0.940 0.825 0.837 0.795 0.865 0.705 0.927 0.356 0.381 0.705 0.810 

(Note: RN for roadways, BS for bus routes, RT for railways, BR for bike routes, WW for sidewalks, RS for ridesharing, ORIG for original, NORMD for 

normalized) 
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With all the functional richness and evenness of each transportation mode in six zip code 

areas calculated, the weight of each indicator was obtained using equations (5)-(8). The results 

are summarized in Table 2.10. 

Table 2.10: Weight of each richness and evenness indicator 

Indicator 𝑅𝑅𝑁 𝑅𝐵𝑆 𝑅𝑅𝑇 𝑅𝐵𝑅 𝑅𝑊𝑊 𝑅𝑅𝑆 

Weight 0.055 0.445 0.104 0.028 0.061 0.232 

Indicator 𝐸𝑅𝑁 𝐸𝐵𝑆 𝐸𝑅𝑇 𝐸𝐵𝑅 𝐸𝑊𝑊 𝐸𝑅𝑆 

Weight 0.001 0.003 0.004 0.012 0.052 0.004 
(Note: RN for roadways, BS for bus routes, RT for railways, BR for bike routes, WW for sidewalks, RS for 

ridesharing) 

 

The physical infrastructure diversity of each zip code area was then calculated using 

equation (4). For example, the physical infrastructure diversity in the 06103 zip code area was 

calculated as follows: 

𝐷𝑃𝐼 = ∑(𝑊𝑅𝑖
𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖 + 𝑊𝐸𝑖

𝐸𝑣𝑒𝑛𝑛𝑒𝑠𝑠𝑖)

6

𝑖=1

 

= 0.055 × 1.000 + 0.445 × 1.000 + 0.104 × 0.537 + 0.028 × 0.970 + 0.061 × 1.000 
         +0.232 × 1.000 + 0.001 × 0.881 + 0.003 × 1.000 + 0.004 × 0.697 + 0.012 × 0.537 
         +0.052 × 1.000 + 0.004 × 0.988 

= 0.945 

Following the same steps, the physical infrastructure diversity of other zip code areas was 

calculated. The physical infrastructure diversity values of all the six zip code areas and their 

normalized values are summarized in Table 2.11. As shown in Table 2.11, the 06103 zip code 

area is the most diverse and the 06114 zip code area is the least diverse in terms of physical 

transportation infrastructures. 

Table 2.11: Values of the physical infrastructure diversity in six zip code areas 

Zip code 06103 06105 06106 06112 06114 06120 

Physical infrastructure diversity 0.945 0.367 0.301 0.203 0.186 0.250 

Physical infrastructure 

diversity-Normalized 
1.000 0.388 0.319 0.214 0.197 0.265 
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Chapter 3.  Travel Behavior Diversity Assessment  

3.1 Literature Review 

Assessing transportation system diversity from the physical infrastructure perspective 

could provide useful insights on transportation infrastructure. However, it may lack 

consideration of the human aspects of transportation. Studying the characteristics of physical 

transportation infrastructures only reflects the transportation design and planning intention, while 

failing to reflect the actual performance of multimodal transportation systems from the travelers’ 

perspective. The complex human-infrastructure interactions could not be captured if only 

focusing on the physical aspects of multimodal transportation systems. 

Aiming at capturing the human aspects in multimodal transportation system assessment, 

existing studies have used subjective rating and expert opinions. For example, a “Transportation 

for Everyone” rating system was developed by Litman (2017) to assess whether travelers are 

satisfied with the existing mobility options. Feng and Hsieh (2009) also studied transportation 

diversity from the views of various transportation stakeholders. Despite the efforts, an objective 

quantification method to assess the level of travel diversity based on actual human behavior is 

still missing. In this study, an entropy-based method to quantify transportation system diversity 

based on travel behavior survey is proposed.  

3.2 Methodology 

Transportation system diversity assessment from the travel behavior perspective reflects 

how diversely travelers are using different transportation modes in a region. In this study, the 

number of trips made by travelers using a specific mode during a given time period is used to 

quantify the usage of the mode. Entropy is calculated based on the deviation from a perfectly 

equal distribution of the usage of all transportation modes. A higher entropy value means that 

travelers are using diverse types of transportation modes in their daily lives. 

The entropy-based travel behavior diversity is determined using the following steps: 

Step 1: The percentage of trips made by each transportation mode in a region is 

calculated: 

 𝑝𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑁𝑖𝑗
𝑛
𝑖=1

 (𝑖 = 1,2, ⋯ , 𝑛;  𝑗 = 1,2, ⋯ , 𝑚) (9) 

𝑝𝑖𝑗: the percentage of trips made by the 𝑖𝑡ℎ transportation mode in the total number of 

trips in the 𝑗𝑡ℎ region during the given period of time; 

𝑁𝑖𝑗: the number of trips using the 𝑖𝑡ℎ transportation mode in the 𝑗𝑡ℎ  region during the 

given period of time; 

𝑚: the number of regions studies; 

𝑛: the number of transportation mode considered. 
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Step 2: Based on the percentages of trips made by different modes obtained in Step 1, the 

entropy value of a region regarding its residents’ diverse travel behaviors can be calculated, as 

shown in equation (10): 

 𝐸𝑗 = −
∑ 𝑝𝑖𝑗 ln 𝑝𝑖𝑗

𝑛
𝑖=1

ln 𝑛
 (𝑗 = 1,2, ⋯ , 𝑚) (10) 

𝐸𝑗: the entropy value of the 𝑗𝑡ℎ region. 

In equation (10), if all 𝑝𝑖𝑗 values of the 𝑗𝑡ℎ region are equal to each other, which means 

𝑝𝑖𝑗 = 1
𝑛⁄ , − ∑ 𝑝𝑖𝑗 ln 𝑝𝑖𝑗

𝑛
𝑖=1  equals to ln 𝑛 and the entropy value will be 1. This means that this 

region has the most diverse possible travel behavior pattern. The entropy value decreases when 

the differences in 𝑝𝑖𝑗 values increases. 

Step 3: Data normalization is conducted to obtain the travel behavior diversity of the 𝑗𝑡ℎ 

region: 

 𝐷𝑇𝑅,𝑗 =
𝐸𝑗

max(𝐸)
 (𝑗 = 1,2, ⋯ , 𝑚) (11) 

𝐸: the entropy values of all regions; 

𝐷𝑇𝑅,𝑗: the normalized travel behavior diversity of the 𝑗𝑡ℎ region. 

3.3 Case Study 

The method for calculating travel behavior diversity was also implemented in the same 

case study of the city of Hartford, Connecticut. The data used for quantifying the travel behavior 

diversity in six zip code areas in the city of Hartford were mainly from a statewide travel 

behavior survey conducted in Connecticut in 2016 (Konduri et al. 2017). Survey invitations were 

mailed to 153,649 households living in Connecticut to understand their travel behaviors. 

Targeted oversampling and up-sampling methods were used to ensure a good representation of 

different households in Connecticut, especially the transit-using and zero-vehicle households, as 

well as the households in hard-to-reach communities (Konduri et al. 2017). In total, 8,403 

households responded and participated in the survey. For the purpose of this study, 2,631 

household responses from the city of Hartford were used for analysis.  

The travel behavior survey was broken down into two distinct parts: the recruit survey 

and the travel diary survey. In the recruit survey, basic background information regarding 

household characteristics was collected. Data collected in the recruit survey included household 

information (e.g., household composition, household demographics, current home location, 

number of household vehicles), personal information (e.g., person-level demographics, typical 

commute behavior), and vehicle information. In the travel diary survey, details regarding all trips 

completed by household members over a pre-assigned 24-hour period were collected. The 

households invited to the survey were randomly assigned one of 30 weekday “travel dates”, 

spread over ten weeks in March, April, and May 2016. All travel dates were on a Tuesday, 

Wednesday, or Thursday, due to the focus on typical weekday travel of residents. Travel dates 
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were pre-assigned to households and invitations were evenly distributed over all the dates. The 

travel diary survey collected details about each individual trip, such as the main purpose of the 

trip, the start and arrived time of the trip, the location of the trip origin and destination, and the 

transportation mode used during the trip.  

Based on the travel behavior survey data, the number of trips of different transportation 

modes made by residents in the six zip code areas in the city of Hartford was captured and used 

for data analysis. While processing the survey data, some trip legs were required to be 

consolidated into a single travel journey using trip linking (Konduri et al. 2017). Trip linking was 

needed, since some survey respondents reported individual trip segments of travel occurrence as 

separate trips when not necessary. For example, an individual going back home from office may 

have been reported walking to the parking lot and driving home as two separate trips. 

Considering the main trip purpose, it should have been reported as a single trip using the auto 

mode. Without trip linking, the trip rates will be inflated, and subsequent travel analyses will be 

erroneous.  

The travel behavior diversity in the six zip code areas in the city of Hartford was 

quantified using the following steps: first, trips made by residents in each of the six zip code 

areas were identified according to the trip originate location. Second, the number of trips made 

by each transportation mode in each zip code area was identified. Finally, equations (9)-(11) 

were used to calculate the travel behavior diversity for each zip code area. The number of trips 

for each transportation mode and the original entropy values of the six zip code areas are 

summarized in Table 3.1. The normalized values of the travel behavior diversity in six zip code 

areas are summarized in Table 3.2. As shown in Table 3.2, zip code area 06103 is the most 

diverse from the travel behavior perspective, while zip code area 06114 is the least diverse from 

the travel behavior perspective. 

Table 3.1: Aggregated number of trips for each transportation mode and the original entropy values in six zip 

code areas 

Zip 

code 

Aggregated number of trips for each transportation mode Total 

number 

of trips 

Entropy 

(original) Driving 
Bus 

system 

Rail 

transit 
Cycling Walking Ridesharing 

06103 194 70 1 3 132 4 404 0.624 

06105 449 74 1 16 181 2 723 0.550 

06106 528 108 0 7 105 10 758 0.504 

06112 130 45 0 4 22 0 201 0.523 

06114 226 60 0 0 30 0 316 0.435 

06120 147 42 0 422 20 2 633 0.512 

 

Table 3.2: Values of the travel behavior diversity in six zip code areas 

Zip code 06103 06105 06106 06112 06114 06120 

Travel behavior diversity 1.000 0.881 0.808 0.838 0.696 0.820 
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Chapter 4.  Comparison of Physical Infrastructure Diversity and 

Travel Behavioral Diversity  

4.1 Comparison of Diversity 

The values of physical infrastructure diversity and travel behavior diversity in the six zip 

code areas in the city of Hartford are shown in Figure 4.1 and Figure 4.2. Diversity values from 

the physical infrastructure and travel behavior perspectives cannot be directly compared, since 

they are quantified through different methods. Instead, the rankings of the two diversity 

indicators are compared. The results are discussed in detail in section 4.2. 

 

Figure 4.1: Ranking of the physical infrastructure diversity in six zip code areas 

 

 

Figure 4.2: Ranking of the travel behavior diversity values in six zip code areas 
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4.2 Results and Findings 

There are several interesting findings from the comparison between the physical 

infrastructure diversity and travel behavior diversity. First, the rankings show similar trends in 

the six zip code areas from both the physical infrastructure and travel behavior perspectives. For 

both infrastructure diversity and travel behavior diversity, zip code area 06103 has the highest 

values among all the zip code areas studied, followed by zip code area 06105. Zip code area 

06114 has the lowest values in terms of both indicators. This finding indicates that the travel 

behavior diversity and physical infrastructure diversity are highly correlated. In order for 

residents to travel using alternative transportation modes, certain infrastructures need to be in 

place. This finding is consistent with research findings from Heinen et al. (2015) and Lin et al. 

(2017), which pointed out that an improvement of the diversity of transportation infrastructures 

could help improve residents’ diverse travel mode choices.  

Second, although residents’ diverse mode choices are highly dependent on the physical 

infrastructure diversity conditions, their diverse travel behavior might also be affected by other 

internal and external factors, which would moderate the constraints of transportation 

infrastructures. Examples of internal factors include people’s intrinsic social values of using 

multiple travel options, as well as their socio-demographic backgrounds. Examples of external 

factors include encouraging residents to use diverse travel options through social media or 

community engagement activities. In the case study, the 06103 zip code area has both the highest 

physical infrastructure diversity and travel behavior diversity. From the physical infrastructure 

perspective, all other zip code areas have much lower diversity values. For example, the 06105 

zip code area, which has the second highest physical infrastructure diversity, has only around 

40% level of diversity compared to the 06103 zip code area. The 06114 zip code area, which has 

the lowest physical infrastructure diversity, has only around 20% level of diversity compared to 

the 06103 zip code area. However, from the travel behavior perspective, there is not much 

difference between different zip code areas studied. For example, the 06114 zip code area, which 

has the lowest travel behavior diversity, still has around 70% level of diversity compared to the 

06103 zip code area. Other four zip code areas have more than 80% level of diversity compared 

to the 06103 zip code area. This finding implies that the internal and external factors mentioned 

above could have significant impacts on residents’ travel behaviors. Even when the physical 

infrastructure diversity is not ideal, it is still possible that people are choosing alternative 

transportation modes actively.  

Third, potential effects of different socio-demographic factors have on people’s travel 

behavior diversity were investigated. In the case study, among the six zip code areas, the 06112 

zip code area ranked the fifth in terms of the physical infrastructure diversity, but ranked the 

third in terms of travel behavior diversity. In order to explain the inconsistency in the rankings in 

the 06112 zip code area, four zip code areas (i.e., 06106, 06112, 06114 and 06120) that have 

similar levels of physical infrastructure diversity were further investigated in terms of their 

socio-demographic factors and potential impacts. The information regarding a list of socio-

demographic factors including gender, age, race, education level, and household income level in 

these four zip code areas was collected from the 2013-2017 American Community Survey (ACS) 

5-Year Estimates (U.S. Census Bureau 2018) and summarized in Table 4.1.  
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Table 4.1: Distributions of residents’ socio-demographic characteristics in four zip code areas in the city of 

Hartford 

Zip code 06106 06112 06114 06120 

Gender 

Male 48.7% 44.0% 49.1% 48.0% 

Female 51.3% 56.0% 50.9% 52.0% 

Age 

Under 15 19.8% 19.8% 22.2% 28.0% 

15-24 19.0% 21.6% 19.7% 17.9% 

24 plus 61.2% 58.6% 58.1% 54.1% 

Race 

White 15.8% 7.6% 13.3% 3.9% 

Hispanic 59.6% 12.7% 63.4% 47.3% 

Asian 2.5% 0.3% 3.5% 0.4% 

Black 19.6% 77.3% 17.0% 46.6% 

Other 2.5% 2.1% 2.8% 1.8% 

Education level 

Less than high school graduate 47.1% 33.0% 30.4% 50.8% 

High school graduate or equivalent 24.2% 18.7% 21.1% 26.0% 

Some college or associate degree 20.6% 16.1% 18.3% 24.8% 

Bachelor’s degree or higher 9.3% 5.0% 16.0% 20.7% 

Household income level 

Less than $10,000 16.3% 14.1% 10.0% 19.6% 

$10,000 to $14,999 10.3% 7.5% 11.3% 9.8% 

$15,000 to $24,999 15.2% 13.0% 14.6% 20.3% 

$25,000 to $34,999 10.7% 11.8% 12.3% 14.9% 

$35,000 to $49,999 14.1% 15.5% 16.5% 16.2% 

$50,000 to $74,999 15.5% 16.7% 17.0% 9.6% 

$75,000 to $99,999 8.3% 9.6% 9.5% 4.4% 

$100,000 to $149,999 6.6% 7.2% 5.5% 4.4% 

$150,000 to $199,999 2.1% 2.8% 2.2% 0.6% 

$200,000 or more 0.8% 1.7% 1.0% 0.0% 

 

Through a close examination, it was found out that three socio-demographic factors 

(gender, age, and race) might be able to explain the fact that a higher rank of travel behavior 

diversity compared with its physical infrastructure diversity in 06112.  

(1) Gender 

According to Table 4.1, 06112 has a female percentage of 56.0%, which is higher than 

the other three zip code areas. Some studies pointed out that due to the natural attributes of trips 

made by females (e.g., shorter travel distance, shorter trip duration), females would show more 

tendency to low-carbon transportation modes (e.g., public transit, cycling, and walking) (Li et al. 

2018; Ng and Acker 2018). Therefore, the higher percentage of female population might be one 
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reason that 06112 shows a more diverse travel pattern under the similar infrastructure diversity 

level with the other three zip code areas.  

(2) Age 

According to Table 4.1, 06112 has 21.6% of population in the age group of 15-24, while 

the other three zip code areas have less than 20% of population in this age group. Studies have 

found out that younger workers in this age group are more likely to choose non-motorized 

commuting modes (e.g., public transit, cycling, and walking), due to their better physical abilities 

and lower income levels (Martin et al. 2016; McKenzie 2014). Therefore, age might be another 

factor to explain why residents in the 06112 zip code area tend to show more diverse travel 

behaviors.  

(3) Race  

Previous studies indicate that Hispanic, Asian, and Black residents tend to use alternative 

transportation modes more, while white residents usually use private cars as their major mode 

option (Martin et al. 2016). As shown in Table 4.1, in zip code areas 06112 and 06120, there is a 

large percentage of residency of Hispanic, Asian, and Black races, and a low percentage of 

residency of white race. Especially in the 06112 zip code area, Black residents occupy an very 

high percentage of the population. This might also contribute to the fact that residents in zip code 

area 06112 are using more diverse transportation modes compared to the other three zip code 

areas.  
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Chapter 5.  Impacts of Transportation Infrastructure Diversity on 

Travel Behaviors during Disasters  

5.1 Transportation Mobility and Evacuation Planning 

When natural disasters happen, evacuations move people away from high-risk areas to 

safer areas for the protection of life using transportation systems. However, natural disasters can 

cause failures in a transportation system, which can affect mobility and other economic activities 

in a community. An important aspect of designing and executing evacuation plans is identifying 

how humans react and move to safe places during a disaster. Human mobility prediction in 

disaster scenarios is crucial for various recovery efforts, including the planning of locations and 

capacities of evacuation shelters, and the allocation of various emergency supplies. A detailed 

understanding of mobility pattern is a major need for emergency responders and in general for 

decision makers such as the federal and state governments. Despite the importance of predicting 

evacuation mobility dynamics after natural disasters for effective first response and disaster 

relief, the general understanding of evacuation mobility behavior of impacted people remains 

limited because of the lack of empirical evidence across multiple disaster instances. What’s 

more, little is known about the impacts of diverse multimodal transportation systems on human 

evacuation and travel behaviors in disasters.  

In existing literature there are two major categories of studies that have investigated 

people’s mobility during and after evacuation. The distinction among these two categories 

primarily lies in the types of data (i.e., survey data and location-based data) that are used to 

analyze the mobility trend. These two categories of studies are briefly discussed below. 

5.1.1 Survey-based studies 

Traditionally, survey has been the key method to investigate people’s evacuation behaviors. 

Although survey-based studies mostly do not explicitly discuss the mobility change 

phenomenon, the outcomes of these studies can be interpreted to determine the mobility 

behavior during natural disasters. These studies either interviewed a sample population after 

a natural disaster impacted them or interviewed the population potentially to be impacted in 

case of a disaster (Murakami et al. 2014; Dostal 2015). For example, Wong et al. (2018) 

studied the evacuation behavior of victims of Hurricane Irma via an online survey data. 

Authors found that factors such as destination of evacuation, transportation mode, household 

income, and length of residence significantly affect the travel behavior. Mongold et al. 

(2021) conducted survey with coastal and inland population after hurricanes Florence, 

Michael, Barry, and Dorian to compare the differences in evacuation decisions and timing. 

Evacuation orders (issuance and receiving of orders) and population factors (e.g., friends, 

neighbors, and acquaintances) were found to significantly contribute to the inland-coastal 

difference in evacuation rates. Elliott and Pais (2006) used survey data collected from 

Hurricane Katrina survivors to examine the influences of race and class on evacuation 

behavior. Xu et al. (2016) developed an ordered probity model based on the demographic 

features (e.g., race, gender, education) from survey that could be used for predicting 

evacuation rates in future. It was observed that although the survey data provided key 

insights on the variables that affect evacuation behaviors of people during a disaster, it is 

challenging and expensive to conduct these surveys due to low sample sizes. Also, the 
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statistical models developed based on these surveys have often been found to lack accuracy 

for prediction and are often challenged when applied to new events (Xu et al. 2016; Henley 

et al. 2020). 

5.1.2 Location-based studies 

With the popularization and wide application of positioning technologies, more and more 

location-based data have been applied in evacuation mobility-related studies. These data 

make it possible to study human mobility patterns based on spatiotemporal location points. 

Specifically, smartphone location data (SLD) using Global Position System (GPS) and social 

media data are currently being widely used to generate key insights on human mobility trend 

during business-as-usual and disaster impacted periods.  

With the ubiquitous use of social media platforms (e.g., Twitter, Facebook etc.), a massive 

volume of real-time data is available. Such data can provide valuable insights on individual 

behavior during extreme events. Most of the research utilizing social media data during 

emergency situations belong to one of the two categories: 1) using social media posts’ text to 

assess the users’ reaction to the emergency (Ross et al. 2018) or 2) mining the spatiotemporal 

variations of the geotagged posts to understand human mobility during extreme events (Roy 

and Hasan 2021;Wang et al. 2017). For example, Martín et al. (2020) and Wang and Taylor 

(2014, 2016) studied how severe natural disasters could influence human mobility patterns in 

coastal urban populations using individuals’ movement data collected from Twitter. They 

analyzed the human movement data before, during, and after each event, comparing the 

perturbed movement data to movement data from business-as-usual conditions. The results 

suggested that natural disasters can significantly perturb human movements by changing 

travel frequencies and displacement. Leveraging the location, time and text of the geo-tagged 

Tweets, by evacuees prior, during and post-hurricane, Kumar and Ukkusuri (2018) found 

large variations in the users’ evacuation patterns, most likely due to lack of previous 

experience of users to cope with large scale natural disaster. Although having geotagged 

social media data is significant for addressing longstanding problems of data availability and 

reliability, there are a few problems associated with it. Only 1-2% of tweets are geo-tagged 

and the location information is of low reliability (Tasse et al. 2017; Priedhorsky et al. 2014). 

Thus, this type of data may not truly reflect the mobility behavior during evacuation for the 

larger population.  

With the development of various mobile positioning technologies, the use of smartphone 

location data (SLD) for mobility and evacuation research has been gaining tractions that 

typically provide a larger sample size. The essence of the SLD is the large-scale 

spatiotemporal data collected from different apps in the phone or from network carriers that 

track call placements of its users. Both the spatial and temporal information can be leveraged 

to obtain users trip information. For example, Song et al. (2013, 2014) constructed a large 

human mobility database that stored GPS records from mobile devices before, during, and 

after two major natural disasters (the Great East Japan Earthquake and Fukushima nuclear 

accident). They also developed a probabilistic inference model based on the dataset to predict 

the short-term and long-term evacuation behaviors for individuals throughout Japan. 

Ultimately, the authors built an intelligent system, namely, DeepMob, for understanding and 

predicting human evacuation behavior and mobility following different types of natural 
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disasters (Song et al. 2017). Using the GPS location and number of calls made by the users,  

Lu et al. (2012) investigated to what extent the chaotic conditions after a natural disaster 

influenced the disorder and unpredictability of the population’s movements, and the 

dynamics of the population flows out of and back into the region of study. In general, SLD 

data has been used to investigate the mobility trend during evacuation due to its relative 

abundance and higher degree of granularity (i.e., more information per data point). Due to 

such benefits, SLD data were used for this study to analyze mobility during natural disasters 

and identify potential relationships with transportation diversity. While doing so, the 

following assumptions are made in this study: (1) in an evacuation scenario, people will have 

access to their mobile phones with signals not being subject to serious interference, and (2) 

SLD data can accurately reflect human mobility distributions in fine spatiotemporal 

granularities. 

5.2 Methodology 

The research methodology primarily consists of three steps: data Collection, data pre-

processing, and mobility analysis.  

5.2.1 Data collection 

In the data collection step, SLD mobility data are collected from a third-party provider. There 

are different data providers that provide access to aggregated and privacy-safe mobility data 

(e.g., Streetlight, Cuebic, SafeGraph). These data are collected from anonymized users who 

have opted-in to provide access to their location data anonymously, through the General Data 

Protection Regulation (GDPR)-compliant framework. Although majority of these data 

providers provide similar mobility data; the country/region of data origin, aggregation level, 

and data collection period may vary. In this study, the main data used is a smartphone 

location dataset provided by SafeGraph, a location intelligence and measurement platform 

(SafeGraph 2021). SafeGraph provides data of Point of Interest (POI) which is defined as “a 

place you spend time or money”. POIs are typically used in maps or geo-datasets to represent 

a particular feature, as opposed to linear features like roads or areas of land-use (Novack et 

al. 2018). SafeGraph collected and anonymized POI data from USA, Canada, and UK from 

various sources (e.g., third-party data partners such as mobile application developers) 

(Dargin et al. 2021). The data in general reveals trends in visits to POIs, including total visits 

over a given period, the number of visits each day, and the overall visitors to POIs from 

different geographic areas. SafeGraph POI visitation data, which is made available for 

academic research free of charge in aggregated form, can be a useful source of information 

for studying certain aspects of urban dynamics and travel behavior. 

SafeGraph provides POI via three primary datasets, i.e., Core places, Geometry, and Patterns. 

Core places datasets contains base information such as location name, category, and brand 

association for POIs where consumers spend time or business operations take place. 

Geometry datasets provide POI footprints with spatial hierarchy metadata depicting when 

child polygons (e.g., restaurant) are contained by parents (e.g., shopping mall) or when two 

children (e.g., restaurant and clothing store) share the same polygon (e.g., shopping 

mall). Finally, Patterns datasets provide place, traffic, and demographic aggregations that 

answer: how often people visit, how long they stay, where they came from, where else they 

go, and more. Overall, the POI data for over 400 categories are available that include 
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industrial, healthcare, retail, parks, leisure sectors and more. This allows analysts to gain 

detailed insight into mobility behavior in a geographic region over time. 

5.2.2 Data pre-processing 

After collecting the data, pre-processing will be conducted to transform it into suitable format 

for mobility analysis. Pre-processing will be conducted in two steps. First, relevant mobility 

data will be identified with respect to selected natural disasters. Second, these data will also 

be categorized according to different zip codes to better capture the mobility trend in specific 

localized areas. This will ultimately result in smaller datasets with more streamlined 

information with regards to mobility behavior of people in specific localized areas during 

natural disasters that will significantly reduce the computational complexity and computation 

time. 

5.2.3 Mobility analysis 

The goal of mobility analysis is to investigate (1) whether there is any difference in people’s 

mobility during natural disasters, and (2) whether transportation diversity has any impacts on 

people’s mobility during natural disasters. After pre-processing the datasets, the mobility 

change during a natural disaster will be calculated using equation (12). 

 

Mobility change

=

(Observed mobility during disaster day − 
Observed average mobility during other same days within the same month)

Observed average mobility during other same days within the same month
  

(

(12) 

A positive value of mobility change indicates that mobility increased during the disaster day 

and negative value indicates otherwise. If applicable, similar analysis will also be conducted 

for the day before and after the disaster day as well. People may move to shelters or other 

safe areas if they are aware that their homes are potentially to be impacted by the disaster. 

People may also move to other areas during the day when disaster hit or the day after their 

homes are structurally damaged or due to loss of key services (e.g., lack of water and 

electricity) to their homes. 

5.3 Case Study 

In the case study, mobility data during two natural disasters were collected and analyzed 

for the six zip codes in the city of Hartford. The mobility results were compared with the 

transportation infrastructure diversity values obtained in Chapter 2 to understand the 

transportation infrastructure impacts on disaster mobility. 

5.3.1 Data description 

In the context of this study, only the Patterns datasets from SafeGraph have been chosen as 

they provide aggregated raw counts of visits to different POIs in Connecticut. An aggregated 

value to different POIs provides a better estimation of the total traffic experienced by them. 

The patterns POI datasets have 28 attributes that provide details information of different 

POIs. Appendix B shows the description, data type, and a sample coding example of 

different attributes in the pattern’s datasets. 
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5.3.2 Identifying natural disasters 

Two natural disasters were identified in the state of Connecticut to investigate the mobility 

pattern during natural disasters. The first natural disaster considered was a thunderstorm with 

four tornadoes and widespread swath of damaging straight-line winds that occurred on May 

15, 2018; which produced one of the most severe weather events in Connecticut in decades 

(NOAA 2021). It caused about $23.7 million in damage and clean-up costs for state and local 

governments in Connecticut (Hladky 2019). The second natural disaster selected was tropical 

storm Isaias that impacted Connecticut on August 4, 2020 which resulted in the first tornado 

on record in Connecticut to be associated with a tropical storm or hurricane (Latto et al. 

2020). Approximately 9,000 trees fell into power lines, street and homes, more than 90 state 

roads were closed, along with hundreds of local streets (Corcoran 2021). The grand total in 

damages to public and private infrastructure was approximately $230 million in Connecticut 

(Corcoran 2021; Eversource 2020). Figure 5.1 and Figure 5.2 show the severity of these 

natural disasters on different parts of Connecticut. These two natural disasters were chosen 

due to their large magnitude and observed effects on human life. In addition, tropical storms 

and tornadoes are two different types of natural disasters. People usually have days to weeks 

to prepare for a tropical storm, while the lead time for tornado warning is much shorter. 

Comparing the results from the two natural disasters could provide additional insights on 

disaster mobility.     

 
Figure 5.1: Severity of thunderstorm in May 15, 2018 (NWS 2018) 

 

https://www.courant.com/news/connecticut/hc-news-big-storm-anniversary-20190515-anangujxu5a2danltmwgcqnrxm-story.html
https://en.wikipedia.org/wiki/Category_1_hurricane
https://en.wikipedia.org/wiki/Connecticut
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Figure 5.2: Severity of tropical storm Isaias in August 4, 2020 (Tomlinson and O’Neill 2020) 

 

5.3.3 Data preprocessing 

Patterns data were collected for two months (i.e., May 2018 and August 2020) across 

different zip codes (i.e., postal_code in Appendix B) in Connecticut. As the transportation 

diversity values were assessed only for six zip codes in Hartford, Connecticut (i.e., 06103, 

06105, 06106, 06112, 06114, and 06120), other zip codes data were removed from the 

datasets.  Each of the six zip codes had multiple POIs, and each POI had a number of visits 

per day (i.e., visits_by_day in Appendix B). As the number of visits per day is provided in a 

matrix format, pre-processing was conducted to divide the matrix data into daily visit counts. 

This results in 31 daily visit counts for all six zip codes in the months of May 2018 and 

August 2020, respectively (Table 5.1 and able 5.2). Results showed that there were more data 

points available for the month of May in 2018 (Table 5.1) compared to August 2020 (able 

5.2). There might be multiple reasons behind this, such as the impact of COVID-19. This 

phenomenon will not have any significant effects on the accuracy of the analysis as the 

available data for each day and each zip code are higher than the minimum acceptable 

sample threshold (i.e., >=30) (Johanson and Brooks 2010).  
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Table 5.1: Observed mobility for May, 2018 
 Zip codes 

Day 
06103 06105 06106 06112 06114 06120 

Total visits 

1 2684 2586 6457 1654 2641 1901 

2 2653 2279 5739 1463 2262 1726 

3 3071 2088 5302 1307 2187 1582 

4 2846 2222 5574 1511 2546 1924 

5 2272 1473 4225 1327 2257 1532 

6 927 1273 3547 1076 1813 1263 

7 2772 2188 5579 1508 2300 1748 

8 2829 2382 5415 1499 2362 1764 

9 2583 2231 5358 1460 2323 1728 

10 2371 2107 4799 1300 1961 1572 

11 2390 2332 5589 1748 2467 2012 

12 1041 1230 3590 1111 1887 1500 

13 707 1017 2847 892 1465 1244 

14 2405 2226 5094 1263 2123 1882 

15 2874 2063 4583 1170 1873 1825 

16 2378 1983 4772 1295 2047 1814 

17 2515 2096 5091 1377 2282 1834 

18 2904 2240 5392 1592 2502 3364 

19 2241 1452 4230 2021 2291 1685 

20 1153 1504 4007 1353 2376 1620 

21 3042 2333 5224 1430 2442 1788 

22 2546 2275 4894 1757 2339 1932 

23 2391 2247 5091 2153 2593 2212 

24 2445 2170 5275 1878 2847 2036 

25 1911 2174 5294 2129 2897 3631 

26 1137 1349 3813 1511 2688 1618 

27 775 1346 3514 1443 2175 1353 

28 537 1138 3168 1405 2031 1575 

29 2364 2280 5178 2041 2825 2061 

30 2609 2235 5062 2738 2987 1932 

31 2854 2394 5414 2557 3260 1909 
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able 5.2: Observed mobility for August, 2020 

 Zip codes 

Day 
06103 06105 06106 06112 06114 06120 

Total visits 

1 401 823 3421 1033 1984 1008 

2 308 751 3555 753 1725 818 

3 729 1252 3587 916 1933 1144 

4 629 1124 3495 759 1893 998 

5 854 1201 3585 898 1902 994 

6 921 1205 3957 908 1996 1213 

7 896 1160 3913 898 1966 1263 

8 456 794 3487 778 1658 1001 

9 378 674 2308 578 1210 571 

10 720 1031 3394 741 1713 990 

11 724 1103 3261 1723 1735 1025 

12 756 1037 2922 3151 1718 1020 

13 692 1065 3188 3676 1824 1042 

14 636 1032 3323 3875 1937 1076 

15 366 772 2984 3734 1667 911 

16 276 613 2322 3644 1286 657 

17 624 1002 3016 3649 1796 990 

18 689 1144 3551 1177 4291 1009 

19 688 934 2953 933 3365 963 

20 719 1196 3215 1065 3755 1228 

21 875 1337 3793 1292 4129 1338 

22 518 1075 2909 1135 3545 1072 

23 312 655 2278 799 2154 608 

24 657 929 2786 869 2616 978 

25 743 991 2847 804 1994 870 

26 769 1020 3038 812 1968 916 

27 691 990 2837 738 1995 853 

28 737 1039 3151 739 1982 988 

29 394 739 2584 727 1742 811 

30 261 597 2049 603 1470 595 

31 715 1079 3034 749 1901 961 

 

5.3.4 Mobility analysis 

The path and potential extent of damage by tropical storm Isaias was predicted by a number 

of agencies such as The National Oceanic and Atmospheric Administration (NOAA). People 

who were living in the potentially affected areas could have evacuated prior to the day when 

the tropical storm Isaias based on the available information. Therefore, mobility data with 

regards to the tropical storm Isaias were collected for the six zip codes on the day prior to the 

disaster (08/03/2020: Monday), on the day of the disaster (08/04/2020: Tuesday), and the day 

after the disaster (08/05/2020: Wednesday). On the other hand, the warning for the four 
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tornadoes and widespread swath of damaging straight-line winds that occurred on May 15, 

2018 was issued only a couple of hours before the disaster impacted the region (Hanrahan 

2018). People could not have evacuated to safer areas due to the unexpected nature of the 

disaster. Therefore, mobility data for the thunderstorm were collected for the six zip codes 

only on the day of the disaster (08/15/2018: Tuesday) and the day after the disaster 

(08/16/2018: Wednesday). 

The results of mobility change during tropical storm Isaias are summarized in Table 5.3. 

Results showed that mobility increased for the zip codes 06103, 06105, 06106, and 06120 on 

the days before and after the disaster. For example, mobility increased by 23.92% and 

20.46%, respectively for zip code 06105 on the days before and after the disaster, 

respectively. It must be noted that zip codes 06103, 06105, 06106, and 06120 were 

previously observed to have higher levels of transportation infrastructure diversity. The 

results implied that if the transportation infrastructure diversity is comparatively higher, there 

is a higher possibility for people to evacuate or carry out their natural activities even in 

disaster times due to ease of access to different transportation modes. Another key 

observation was that despite having the most diverse transportation infrastructure, mobility 

increase was not the highest for zip code 06103 on the days before and after the disaster. This 

may be attributed to other factors such as potentially higher structural resilience of homes in 

zip code 06103. However, on the disaster day, zip code 06103 saw a decrease in mobility 

change by 12.47%. This might because that people already found shelter beforehand due to 

better transportation infrastructure and staying there till the disaster tapers off. Mobility was 

observed to decrease for 06112 and 06114 for the days before, during, and after the disaster. 

This shows that people living in areas with lower levels of transportation infrastructure 

diversity may be stuck despite facing significant challenges from natural disasters. If any of 

the existing transportation infrastructures is disrupted in those areas, the challenge for people 

moving in and out of these areas increases, causing a decrease in the disaster resilience of 

residents. 

With regards to the thunderstorm, mobility was observed to increase only in zip code 06103 

on disaster day by 10.29%. Even though people could not anticipate the disaster, they could 

evacuate to safe areas more easily due to more diverse transportation infrastructures in zip 

code 06103. On the day after the disaster, mobility decreased in all zip codes. For example, 

mobility decreased by 10.17% and 4.50% for zip codes 06106 and 06120, respectively on the 

day after the disaster. Another significant observation was that the mobility decreases on zip 

codes 06103, 06105, 06106, and 06120 was lower compared to zip codes 06112 and 06114. 

This reinforced the insights of the findings from tropical storm Isaias that higher 

transportation infrastructure diversity results in comparatively lower effects on mobility. This 

means that people living in areas with higher transportation infrastructure diversity levels are 

potentially more resilient to disasters.  
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Table 5.3: Mobility change during hurricane Isaias 

 Zip Codes 

Day before 

(08/03/2020: Monday) 
06103 06105 06106 06112 06114 06120 

Observed Mobility 729 1252 3587 916 1933 1144 

Other Monday within 

this month (Avg.) 
679 1010.25 3057.5 1502 2006.5 979.75 

Mobility change (%) 7.36 23.92 17.31 -39.01 -3.66 16.76 

 Zip Codes 

Disaster day 

(08/04/2020: Tuesday) 
06103 06105 06106 06112 06114 06120 

Observed Mobility 629 1124 3495 759 1893 998 

Other Tuesday within 

this month (Avg.) 
718.66 1079.33 3219.66 1234.66 2673.33 968 

Mobility change (%) -12.47 4.13 8.55 -38.52 -29.19 3.09 

 Zip Codes 

Day after (08/05/2020: 

Wednesday) 
06103 06105 06106 06112 06114 06120 

Observed Mobility 854 1201 3585 898 1902 994 

Other Wednesday within 

this month (Avg.) 
737.66 997 2971 1632 2350.3 966.33 

Mobility change (%) 15.77 20.46 20.66 -44.97 -19.07 2.86 
 

Table 5.4: Mobility change during thunderstorm wind 

 Zip Codes 

Disaster day 

(5/15/2018: Tuesday) 
06103 06105 06106 06112 06114 06120 

Observed 2874 2063 4583 1170 1873 1825 

Other Tuesday within 

this month 
2605.75 2380.75 5486 1737.75 2541.75 1914.5 

Mobility change (%) 10.29 -13.34 -16.46 -32.67 -26.31 -4.67 

 Zip Codes 

Day after (5/16/2018: 

Wednesday) 
06103 06105 06106 06112 06114 06120 

Observed 2378 1983 4772 1295 2047 1814 

Other Wednesday 

within this month 
2559 2248 5312.5 1953.5 2541.25 1899.5 

Mobility change (%) -7.07 -11.78 -10.17 -33.71 -19.44 -4.50 
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Chapter 6.  Conclusion and Future Work 

This study explored the diversity of multimodal transportation systems and its impact on 

travel behaviors, especially during disasters. The proposed methods were implemented in a case 

study of the city of Hartford, Connecticut. By calculating and comparing the physical 

infrastructure diversity and travel behavior diversity of multimodal transportation systems in the 

six zip code areas in Hartford, it was found out that a higher level of physical infrastructure 

diversity could promote a higher level of diversity in travel behaviors. However, the travel 

behavior diversity variation across different zip code areas is not as significant as the variation in 

their physical infrastructure diversity levels. It implied that humans are resourceful in using 

existing multimodal transportation systems, and measures can be taken to enhance the diversity 

of travel behaviors even if the infrastructure diversity level is not ideal. For example, advertising 

the availability and benefits of multiple transportation options through various channels such as 

community engagement activities and social media could help residents adopt alternative 

transportation modes. In addition, social-economic factors (i.e., gender, age, and race) and their 

impacts on travel behavior diversity in the case study were discussed. Smartphone location data 

(SLD) were used to understand human mobility during two disasters in the city of Hartford. The 

results suggested that if the transportation infrastructure diversity is comparatively higher, there 

is a higher possibility for people to better cope with disasters due to ease of access to different 

transportation modes. 

 

Transportation and urban planners could use the proposed methods and results to obtain a 

holistic understanding of a multimodal transportation system, and better guide the planning and 

design of multimodal cities. First, investment on diverse physical infrastructures such as bus 

routes and bike routes should be considered, since an improvement of physical infrastructure 

diversity could help improve travel behavior diversity. Second, in regions where resource is 

limited for directly improving physical infrastructure, other measures can be taken such as 

community engagement and social network influence to prompt the use of alternative 

transportation modes. Third, there is no “one-size-fits-all” solution for different multimodal 

transportation systems in different regions. Socio-demographic backgrounds of the travelers 

should be carefully incorporated into consideration when planning and designing a multimodal 

transportation system. 

 

The existing study has several limitations. First, the scope of case study is limited. The 

observations from the case study might not be true for other areas. In order to develop general 

findings and theories, more case studies are required in future work. Second, currently the 

disaster mobility is investigated at the aggregate level. The potential impacts of transportation 

infrastructure diversity on individual disaster evacuation behaviors and mobility changes need to 

be further studied in the future through other methods such as interview and survey.  
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Appendix A: Python Code for Functional Richness and Evenness 

Calculation                                   

import pandas as pd 

import numpy as np 

df=pd.read_excel('Hartford Infrastructural Data.xlsx',skiprows=1,sheet_name='Data Collection') 

 

#Richness calculation 

R_RN=df['roadway lengths']/df['area SQMI'] 

R_BS=df['bus route lengths']/df['area SQMI'] 

R_RT=df['railway lengths']/df['area SQMI'] 

R_BR=df['bike lane lengths']/df['area SQMI'] 

R_WW=df['sidewalk lengths']/5/5280/df['area SQMI'] 

R_RS=df['Ridesharers that live in zip code']/df['area SQMI'] 

result1=pd.DataFrame({'R_RN':R_RN,'R_BS':R_BS,'R_RT':R_RT,'R_BR':R_BR,'R_WW':R_W

W,'R_RS':R_RS}) 

result1.to_excel('output_richness.xlsx', sheet_name='Sheet1') 

 

#Evenness calculation 

df1=pd.read_excel('Hartford Infrastructural Data.xlsx','06103') 

df2=pd.read_excel('Hartford Infrastructural Data.xlsx','06105') 

df3=pd.read_excel('Hartford Infrastructural Data.xlsx','06106') 

df4=pd.read_excel('Hartford Infrastructural Data.xlsx','06112') 

df5=pd.read_excel('Hartford Infrastructural Data.xlsx','06114') 

df6=pd.read_excel('Hartford Infrastructural Data.xlsx','06120') 

 

#Evenness of roadways 

sum1=0 

for i in range(len(df1)): 

    sum1+=min(df1['Roadway'][i]/df1['Roadway'].sum(),1/len(df1)) 

sum2=0 

for i in range(len(df2)): 

    sum2+=min(df2['Roadway'][i]/df2['Roadway'].sum(),1/len(df2)) 

sum3=0 

for i in range(len(df3)): 

    sum3+=min(df3['Roadway'][i]/df3['Roadway'].sum(),1/len(df3)) 

sum4=0 

for i in range(len(df4)): 

    sum4+=min(df4['Roadway'][i]/df4['Roadway'].sum(),1/len(df4)) 

sum5=0 

for i in range(len(df5)): 

    sum5+=min(df5['Roadway'][i]/df5['Roadway'].sum(),1/len(df5)) 

sum6=0 

for i in range(len(df6)): 

    sum6+=min(df6['Roadway'][i]/df6['Roadway'].sum(),1/len(df6)) 
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E_RN=pd.Series([(sum1-1/len(df1))/(1-1/len(df1)),(sum2-1/len(df2))/(1-1/len(df2)),(sum3-

1/len(df3))/(1-1/len(df3)),(sum4-1/len(df4))/(1-1/len(df4)),(sum5-1/len(df5))/(1-

1/len(df5)),(sum6-1/len(df6))/(1-1/len(df6))]) 

 

#Evenness of bus routes 

sum1=0 

for i in range(len(df1)): 

    sum1+=min(df1['Bus Stop'][i]/df1['Bus Stop'].sum(),1/len(df1)) 

sum2=0 

for i in range(len(df2)): 

    sum2+=min(df2['Bus Stop'][i]/df2['Bus Stop'].sum(),1/len(df2)) 

sum3=0 

for i in range(len(df3)): 

    sum3+=min(df3['Bus Stop'][i]/df3['Bus Stop'].sum(),1/len(df3)) 

sum4=0 

for i in range(len(df4)): 

    sum4+=min(df4['Bus Stop'][i]/df4['Bus Stop'].sum(),1/len(df4)) 

sum5=0 

for i in range(len(df5)): 

    sum5+=min(df5['Bus Stop'][i]/df5['Bus Stop'].sum(),1/len(df5)) 

sum6=0 

for i in range(len(df6)): 

    sum6+=min(df6['Bus Stop'][i]/df6['Bus Stop'].sum(),1/len(df6)) 

E_BS=pd.Series([(sum1-1/len(df1))/(1-1/len(df1)),(sum2-1/len(df2))/(1-1/len(df2)),(sum3-

1/len(df3))/(1-1/len(df3)),(sum4-1/len(df4))/(1-1/len(df4)),(sum5-1/len(df5))/(1-

1/len(df5)),(sum6-1/len(df6))/(1-1/len(df6))]) 

 

#Evenness of railways 

sum1=0 

for i in range(len(df1)): 

    sum1+=min(df1['Railroad Station'][i]/df1['Railroad Station'].sum(),1/len(df1)) 

sum2=0 

for i in range(len(df2)): 

    sum2+=min(df2['Railroad Station'][i]/df2['Railroad Station'].sum(),1/len(df2)) 

sum3=0 

for i in range(len(df3)): 

    sum3+=min(df3['Railroad Station'][i]/df3['Railroad Station'].sum(),1/len(df3)) 

sum4=0 

for i in range(len(df4)): 

    sum4+=min(df4['Railroad Station'][i]/df4['Railroad Station'].sum(),1/len(df4)) 

sum5=0 

for i in range(len(df5)): 

    sum5+=min(df5['Railroad Station'][i]/df5['Railroad Station'].sum(),1/len(df5)) 

sum6=0 

for i in range(len(df6)): 

    sum6+=min(df6['Railroad Station'][i]/df6['Railroad Station'].sum(),1/len(df6)) 



52 

E_RT=pd.Series([(sum1-1/len(df1))/(1-1/len(df1)),(sum2-1/len(df2))/(1-1/len(df2)),(sum3-

1/len(df3))/(1-1/len(df3)),(sum4-1/len(df4))/(1-1/len(df4)),(sum5-1/len(df5))/(1-

1/len(df5)),(sum6-1/len(df6))/(1-1/len(df6))]) 

 

#Evenness of bike routes 

sum1=0 

for i in range(len(df1)): 

    sum1+=min(df1['Bike Path'][i]/df1['Bike Path'].sum(),1/len(df1)) 

sum2=0 

for i in range(len(df2)): 

    sum2+=min(df2['Bike Path'][i]/df2['Bike Path'].sum(),1/len(df2)) 

sum3=0 

for i in range(len(df3)): 

    sum3+=min(df3['Bike Path'][i]/df3['Bike Path'].sum(),1/len(df3)) 

sum4=0 

for i in range(len(df4)): 

    sum4+=min(df4['Bike Path'][i]/df4['Bike Path'].sum(),1/len(df4)) 

sum5=0 

for i in range(len(df5)): 

    sum5+=min(df5['Bike Path'][i]/df5['Bike Path'].sum(),1/len(df5)) 

sum6=0 

for i in range(len(df6)): 

    sum6+=min(df6['Bike Path'][i]/df6['Bike Path'].sum(),1/len(df6)) 

E_BR=pd.Series([(sum1-1/len(df1))/(1-1/len(df1)),(sum2-1/len(df2))/(1-1/len(df2)),(sum3-

1/len(df3))/(1-1/len(df3)),(sum4-1/len(df4))/(1-1/len(df4)),(sum5-1/len(df5))/(1-

1/len(df5)),(sum6-1/len(df6))/(1-1/len(df6))]) 

 

#Evenness of sidewalks 

sum1=0 

for i in range(len(df1)): 

    sum1+=min(df1['Sidewalk'][i]/df1['Sidewalk'].sum(),1/len(df1)) 

sum2=0 

for i in range(len(df2)): 

    sum2+=min(df2['Sidewalk'][i]/df2['Sidewalk'].sum(),1/len(df2)) 

sum3=0 

for i in range(len(df3)): 

    sum3+=min(df3['Sidewalk'][i]/df3['Sidewalk'].sum(),1/len(df3)) 

sum4=0 

for i in range(len(df4)): 

    sum4+=min(df4['Sidewalk'][i]/df4['Sidewalk'].sum(),1/len(df4)) 

sum5=0 

for i in range(len(df5)): 

    sum5+=min(df5['Sidewalk'][i]/df5['Sidewalk'].sum(),1/len(df5)) 

sum6=0 

for i in range(len(df6)): 

    sum6+=min(df6['Sidewalk'][i]/df6['Sidewalk'].sum(),1/len(df6)) 
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E_WW=pd.Series([(sum1-1/len(df1))/(1-1/len(df1)),(sum2-1/len(df2))/(1-1/len(df2)),(sum3-

1/len(df3))/(1-1/len(df3)),(sum4-1/len(df4))/(1-1/len(df4)),(sum5-1/len(df5))/(1-

1/len(df5)),(sum6-1/len(df6))/(1-1/len(df6))]) 

 

#Evenness of ridesharing 

sum1=0 

for i in range(len(df1)): 

    sum1+=min(df1['Ridesharers (live, 0.5mi)'][i]/df1['Ridesharers (live, 

0.5mi)'].sum(),1/len(df1)) 

sum2=0 

for i in range(len(df2)): 

    sum2+=min(df2['Ridesharers (live, 0.5mi)'][i]/df2['Ridesharers (live, 

0.5mi)'].sum(),1/len(df2)) 

sum3=0 

for i in range(len(df3)): 

    sum3+=min(df3['Ridesharers (live, 0.5mi)'][i]/df3['Ridesharers (live, 

0.5mi)'].sum(),1/len(df3)) 

sum4=0 

for i in range(len(df4)): 

    sum4+=min(df4['Ridesharers (live, 0.5mi)'][i]/df4['Ridesharers (live, 

0.5mi)'].sum(),1/len(df4)) 

sum5=0 

for i in range(len(df5)): 

    sum5+=min(df5['Ridesharers (live, 0.5mi)'][i]/df5['Ridesharers (live, 

0.5mi)'].sum(),1/len(df5)) 

sum6=0 

for i in range(len(df6)): 

    sum6+=min(df6['Ridesharers (live, 0.5mi)'][i]/df6['Ridesharers (live, 

0.5mi)'].sum(),1/len(df6)) 

E_RS=pd.Series([(sum1-1/len(df1))/(1-1/len(df1)),(sum2-1/len(df2))/(1-1/len(df2)),(sum3-

1/len(df3))/(1-1/len(df3)),(sum4-1/len(df4))/(1-1/len(df4)),(sum5-1/len(df5))/(1-

1/len(df5)),(sum6-1/len(df6))/(1-1/len(df6))]) 

 

result2=pd.DataFrame({'E_RN':E_RN,'E_BS':E_BS,'E_RT':E_RT,'E_BR':E_BR,'E_WW':E_W

W,'E_RS':E_RS}) 

result2.to_excel('output_evenness.xlsx', sheet_name='Sheet1') 

  



54 

Appendix B: Description of Pattern Datasets                                   

Table B.1: Description of pattern datasets 

Column 

Name 
Description Type Example 

placekey Unique and persistent ID tied to this POI. String 222-222@222-222-222 

parent_plac

ekey 

If place is encompassed by a larger place (e.g., 

mall, airport), this lists the placekey of the 

parent place; otherwise, null. 

String 223-223@222-222-222 

location_na

me 
The name of the place of interest. String 

Salinas Valley Ford 

Lincoln 

street_addre

ss 
Street address of the place of interest. String 1100 Auto Center Circle 

city The city of the point of interest. String Irvine 

region 
The state, province or county of the place of 

interest. 
String CA 

postal_code The postal code of the place of interest. String 92602 

safegraph_b

rand_ids 

Unique and consistent ID that represents this 

specific brand. 
List 

SG_BRAND_59dcabd7cd2

395a2, 

SG_BRAND_8310c2e3461

b8b5a 

brands 

If this POI is an instance of a larger brand that 

we have explicitly identified, this column will 

contain that brand name. 

List ford, lincoln 

date_range_

start 

Start time for measurement period in ISO 8601 

format of YYYY-MM-

DDTHH:mm:SS±hh:mm (local time with 

offset from GMT). 

String 
2020-03-01T00:00:00-

06:00 

date_range_

end 

End time for measurement period in ISO 8601 

format of YYYY-MM-

DDTHH:mm:SS±hh:mm (local time with 

offset from GMT). The end time will be the 

last day of the month at 12 a.m. local time. 

String 
2020-03-31T00:00:00-

06:00 

raw_visit_c

ounts 

Number of visits in our panel to this POI 

during the date range. 
Integer 1542 

raw_visitor

_counts 

Number of unique visitors from our panel to 

this POI during the date range. 
Integer 1221 

visits_by_d

ay 

The number of visits to the POI each day 

(local time) over the covered time period. 

JSON 

[Integer] 

[33, 22, 33, 22, 33, 22, 22, 

21, 23, 33, 22, 11, 44, 22, 

22, 44, 11, 33, 44, 44, 44, 

33, 34, 44, 22, 33, 44, 44, 

34, 43, 43] 

poi_cbg 
The census block group the POI is located 

within. 
String 560610112022 

https://docs.safegraph.com/docs/monthly-patterns#section-street-address
https://docs.safegraph.com/docs/monthly-patterns#section-city
https://docs.safegraph.com/docs/monthly-patterns#section-postal-code
https://docs.safegraph.com/docs/core-places#section-brands
https://docs.safegraph.com/docs/monthly-patterns#section-using-census-block-groups
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Column 

Name 
Description Type Example 

visitor_hom

e_cbgs 

The number of visitors to the POI from each 

census block group based on the visitor's home 

location. 

JSON 

{String: 

Integer} 

{"360610112021": 603, 

"460610112021": 243, 

"560610112021": 106, 

"660610112021": 87, 

"660610112021": 51} 

visitor_hom

e_aggregati

on 

The number of visitors to the POI from each 

census tract based on the visitor's home 

location. 

JSON 

{String: 

Integer} 

{"17031440300": 1005, 

"18089021500": 522, 

"17197883516": 233, 

"17031826402": 5, 

"17031826301": 4, 

"04013115802": 4} 

visitor_dayt

ime_cbgs 

The number of visitors to the POI from each 

census block group based on primary daytime 

location between 9 am - 5 pm. 

JSON 

{String: 

Integer} 

{"360610112030": 9872, 

"880610112021": 8441, 

"569610112020": 5671, 

"160610112041": 2296, 

"980610112021": 1985} 

visitor_cou

ntry_of_ori

gin 

The number of visitors to the POI from each 

country based on visitor's home country code. 

JSON 

{String: 

Integer} 

{"US": 98,"CA": 12} 

distance_fr

om_home 

Median distance from home travelled by 

visitors (of visitors whose home we have 

identified) in meters. 

Integer 1211 

median_dw

ell 
Median minimum dwell time in minutes. Double 5 

bucketed_d

well_times 

The distribution of visit dwell times based on 

pre-specified buckets. Key is the range of 

dwell time in minutes and value is number of 

visits that were within that range. 

JSON 

{String: 

Integer} 

{ "<5": 40, "5-20": 22, "21-

60": 45, "61-240": 3, 

">240": 5} 

related_sam

e_day_bran

d 

Other brands that the visitors to this POI 

visited on the same day as the visit to this POI. 

JSON 

{String: 

Integer} 

{"mcdonalds": 7,"amc": 

5,"target": 3} 

related_sam

e_month_br

and 

Other brands that the visitors to this POI 

visited in the same month as the visit to this 

POI. 

JSON 

{String: 

Integer} 

{"mcdonalds": 7,"amc": 

5,"target": 3} 

popularity_

by_hour 

The number of visits in each hour over the 

course of the date range, in local time. First 

element in the array corresponds to the hour of 

midnight to 1 am, second is 1am to 2am, etc. 

JSON 

[Integer] 

[ 0, 0, 0, 0, 0, 0, 0, 222, 

546, 444, 333, 232, 432, 

564, 456, 345, 678, 434, 

545, 222, 0, 0, 0, 0 ] 

popularity_

by_day 

The number of visits in total on each day of 

the week (in local time) over the course of the 

date range. 

JSON 

{String: 

Integer} 

{"Monday": 

3300,"Tuesday": 

1200,"Wednesday": 

898,"Thursday": 

7002,"Friday": 

5001,"Saturday": 

5987,"Sunday": 0} 



56 

Column 

Name 
Description Type Example 

device_type 
The number of visitors to the POI that are 

using Android vs. iOS. 

JSON 

{String: 

Integer} 

{"android": 6, "ios": 8} 

carrier_nam

e 

The number of visitors to the POI based on the 

wireless carrier of the device. 

JSON 

{String: 

Integer} 

{"Verizon": 342, "T-

Mobile": 288, "AT&T": 

265} 

 


